You are here

Assessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms.

TitleAssessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms.
Publication TypeJournal Article
Year of Publication2020
AuthorsWu F, Harper BJ, Crandon LE, Harper SL
JournalEnviron Sci Nano
Date Published2020 Jan 01

Copper based nanoparticles (NPs) are used extensively in industrial and commercial products as sensors, catalysts, surfactants, antimicrobials, and for other purposes. The high production volume and increasing use of copper-based NPs make their ecological risk a concern. Commonly used copper-based NPs are composed of metallic copper or copper oxide (Cu and CuO NPs); however, their environmental toxicity can vary dramatically depending on their physico-chemical properties, such as dissolution, aggregation behavior, and the generation of reactive oxygen species. Here, we investigated the NP dissolution, organismal uptake and aquatic toxicity of Cu and CuO NPs at 0, 0.1, 1, 5 or 10 mg Cu/L using a previously developed multi-species microcosm. This 5-day microcosm assay was comprised of , , , and . We hypothesized that Cu and CuO NPs can elicit differential toxicity to the organisms due to alterations in particle dissolution and variations in organismal uptake. The actual concentrations of dissolved Cu released from the NPs were compared to ionic copper controls (CuCl) at the same concentrations to determine the relative contribution of particulate and dissolved Cu on organism uptake and toxicity. We found that both NPs had higher uptake in and zebrafish than equivalent ionic exposures, suggesting that both Cu-based NPs are taken up by organisms. Cu NP exposures significantly inhibited algal growth rate, survival, and zebrafish hatching while exposure to equivalent concentrations of CuCl (dissolved Cu fraction) and CuO NPs did not. This indicates that Cu NPs themselves likely elicited a particle-specific mechanism of toxicity to the test organisms, or a combination effect from ionic Cu and the Cu NPs. Overall, this work was the first study to utilize a small-scale rapid assay designed to evaluate the fate and ecotoxicological impacts of Cu and CuO NPs in a mixed aquatic community.

Alternate JournalEnviron Sci Nano
PubMed ID32391155
PubMed Central IDPMC7211403
Grant ListP30 ES000210 / ES / NIEHS NIH HHS / United States
R01 ES017552 / ES / NIEHS NIH HHS / United States

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer